
1. Access the NSG (Neuroscience Gateway) Portal [1].

2. Click “Register Account” to create an account and fill in all the information
needed.

3. Once the account is created, click “Access NSG Portal” to access the login
page.

4. Inside the account, create a folder with a meaningful name.

5. Inside the folder, go to “data” folder and upload zip files into the folder. (In
our project, we uploaded the Jones Model zip file).

6. Once data is uploaded, go to the “task” folder and create new tasks.

7. Modify number of cores through the parameter list, where the final number of
cores is the product of the number of nodes and number of cores per node.

8. “Save and Run Task” to NSG.
9. An email would be sent informing the completion of a task.

10. Once the job is completed, view the output and download the “STDOUT” file.

11. Record the time used to complete the task.

Zero to Neuro

1. Make a Comet account.
2. Go to Model DP [2] and download the zip file.
3. Download “WinSCP” to transfer the Jones file to your own Comet directory.
4. Log into your Comet account.
5. Drag and drop the Jones script from your computer’s files into your Comet

directory.
6. Download “putty” to access your Comet account, or use terminal for Macs.
7. Log into Comet [3].
8. Log in with your Comet username and password.
9. Type “ls” to display all of your files. “JonesEtAl2009” should be listed.

10. Enter the “JonesEtAl2009” directory by typing “cd JonesEtAl2009/”.
11. Create or edit a pre existing script and call it “Jones_script”. This will be used to

submit the Batch.hoc file to run the program.
12. Type “vi Jones_script” to edit the script. Type “i” then enter to insert and edit

the information.
13. Set the job and output name to a meaningful name to keep track of varying

nodes and tasks. Change the mail-user to your own email to receive
notifications of when the submitted task is finished. Set the number of nodes
and ntasks per node both to 1. Add in “module purge”, “module load intel”,
“module load openmpi_ib”, and “ibrun
~nsguser/applications/neuron7.5single/installdir/x86_64/bin/nrniv -mpi
Batch.hoc” at the end of the program.

14. Hit the “esc” key, then type “ZZ” to exit and save the edited script.
15. Enter “sbatch Jones_script” to submit the job.
16. There should be a new line that says “Submitted batch job ___” with a string of

numbers.
17. Check your email to see when the submitted job is completed, then type “ls” to

find the output file. It should be listed as the name you’ve given the output file,
for example “1node1task”.

18. Type “cat ___” with your output file name to see the contents of the output file.
19. Record the finish time time as a data point. This time includes the set up time

and the run time.

20. Repeat steps 12 through 19 with varying numbers of nodes and tasks per node,
making sure to also update the job and output names accordingly to keep track.

Tina Huang1, Yuchen Huang2

Subhashini Sivagnanam3, Amitava Majumdar3

1Westview High School, 2Cathedral Catholic High School,
3UCSD San Diego Supercomputer Center

Abstract
Using supercomputers drastically increases the efficiency of completing a task
by using multiple nodes and tasks per node to spread out the work. The
Neuroscience Gateway (NSG) is an effective tool for neuroscientists to gain
access to supercomputers to run computational neuroscience simulations,
eliminating the need to go through the supercomputer’s backend to submit their
scripts. We compared the steps for using NSG and going through the backend to
demonstrate how the simple user interface of NSG makes it efficient and less
complicated for neuroscientists around the world to further their research.

Introduction
The research intends to explore the convenience of providing gateways on
supercomputers, such as the Neuroscience Gateway. Supercomputers increase the
efficiency of research by assigning work to multiple cores, thus distributing the
workload and decreasing the work time. The utilization of supercomputers
require knowledge of operating Linux, using compiling tools and understanding
schedulers and file systems. Gateways like NSG are used to make up for the lack
of cyber-infrastructure knowledge for some scientists. The comparison between
the NSG interface and Comet back end highlights the ease of use of NSG, which
enables any scientist to make full use of the supercomputers regardless of their
cyber-infrastructure background. Neuroscientists can also use computer
simulated environments to recreate processes in the brain, and can increase
complexity and test many variables to predict what might happen in a real life
situation.

Access through Neuroscience Gateway (NSG) Portal Access through Comet Backend

Part 1: Scaling Studies Through NSG and Comet Part 2: Modeling Action Potential Using Python and NEURON

References

[1] https://www.nsgportal.org/index.html
[2] https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=136803
[3] https://www.sdsc.edu/services/hpc/hpc_systems.html#comet
[4] https://www.neuron.yale.edu/neuron/static/docs/neuronpython/firststeps.html#what-is-neuron

Figure 1 Comparing the finish times using the NSG portal and through the backend of Comet using the Jones model [2].

Research and Results

Summary
After 2 months of research on NSG and Comet, we have learned that gateways greatly increase the
efficiency of executing computational neuroscience tasks. Neuroscientists can easily use simulation
environments, such as NEURON, to model brain structures and activities, such as action potentials
in neurons. Modeling real life processes in hypothetical environments can push the limits of
experiments that can be accomplished in laboratories.

Figure 2 Action potential graph using NEURON of a simple neuron model with a passive cell membrane.

Future Work
We plan to continue our work by exploring how to model more complex functions of the brain
using NEURON. Our first step would be to create a model of a network of cells that can run on a
parallel machine, then investigate how different neurotransmitters affect synapses.

Figure 3 Code written in Python to create a graph of action potential using NEURON.

We accessed the NEURON + Python Basics page [4] and created a simple neuron with a
passive cell membrane using Python code. We inserted an alpha synapse, set up recording
variables, then ran the simulation using NEURON’s software.

Methods/Tools
1. Comet

Comet is a dedicated eXtreme Science and Engineering Discovery Environment (XSEDE) cluster
designed by Dell and SDSC delivering 2.76 peak petaflops. It features Intel next-gen processors
with AVX2, Mellanox FDR InfiniBand interconnects, and Aeon storage.

2. NEURON
NEURON is a simulation environment for modeling individual neurons and networks of neurons.
It provides tools for conveniently building, managing, and using models in a way that is
numerically sound and computationally efficient. It is particularly well-suited to problems that are
closely linked to experimental data, especially those that involve cells with complex anatomical
and biophysical properties.

3. Neuroscience Gateway
The Neuroscience Gateway (NSG) project facilitates access and use of National Science
Foundation funded High Performance Computing (HPC), High Throughput Computing (HTC)
and cloud resources by neuroscientists.

4. Jones model
An example of biophysically realistic neural model.

After familiarizing ourselves with the NEURON software and design, we continued the
ball and stick tutorial to create a model of a soma connected to a dendrite. We added
biophysical mechanisms, and then stimulated the neuron by sending a current pulse
through the distal end of the dendrite. Varying the number of segments on the dendrite
resulted in different outputs.

Figure 5 Measuring the action potential along various parts of the neuron. The number
of segments was also another factor that modified the output.

Figure 4 A simple ball and stick model of a neuron with a soma and dendrites.

https://www.nsgportal.org/index.html
https://senselab.med.yale.edu/ModelDB/ShowModel.cshtml?model=136803
https://www.neuron.yale.edu/neuron/static/docs/neuronpython/firststeps.html#what-is-neuron

